

Bus Connects Route 8 Tallaght/Clondalkin to City Centre – Ground Investigation

Client: National Transport Authority (NTA)

Client's Representative: AECOM/Mott MacDonald

Report No.: 20-0399C

Date: December 2020

Status: Final for Issue

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTI	HORITY4	
2	SCOP	PE4	
3	DESC	RIPTION OF SITE4	
4	SITE 4.1 4.2 4.3 4.4 4.5	OPERATIONS	
5		DRATORY WORK6 Geotechnical laboratory testing of soils7	
	5.2	Geotechnical laboratory testing of rock	
6	GROU 6.1 6.2 6.3	JND CONDITIONS 7 General geology of the area 7 Ground types encountered during investigation of the site 8 Groundwater 8	
7	REFE	ERENCES9	

APPENDICES

Appendix A	Site and	explorat	tory	hole	location pl	ans
------------	----------	----------	------	------	-------------	-----

Appendix B Borehole logs

Appendix C Core photographs

Appendix E Geotechnical laboratory test results

Appendix F SPT hammer energy measurement report

Document Control Sheet

Report No.:		20-0399C			
Project Title:		Bus Connects Ro	oute 8 Tallaght/C	londalkin to City (Centre
Client:		National Transp	oort Authority (N	ΓA)	
Client's Repres	entative:	AECOM/Mott M	acDonald		
Revision:	A01	Status:	Final for Issue	Issue Date:	14 th December 2020
Prepared by:		Reviewed by:		Approved by:	
hia	Ross.	Colm H	lin (g	Jam O l	luoj.
Sean Ross BSc MSc MIEI		Colm Hurley BSc FGS PGeo		Darren O'Mahor BSc MSc MIEI Et	

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

Abbreviations use	ed on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
P	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
$\overline{}$	Water strike: initial depth of strike.
•	Water strike: depth water rose to.
Abbreviations relating	g to rock core – reference Clause 36.4.4 of BS 5930: 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Bus Connects Route 8 Tallaght/Clondalkin to City Centre

1 **AUTHORITY**

On the instructions of AECOM/Mott MacDonald, ("the Client's Representative"), acting on the behalf of National Transport Authority (NTA) ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information to inform the planning stage design and enable the design of Bus Connects Core Bus Corridors.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, soil and rock core sampling, environmental sampling, groundwater monitoring, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted from north west to north east across the junction of the Long Mile Road and the Naas Road in Drimnagh Dublin 12. The junctions also comprise the Luas Red Line from the Red Cow to Connolly station.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 13th and 22nd October 2020, comprised:

- four light cable percussion boreholes
- four rotary follow-on boreholes
- a standpipe installation in two boreholes

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Four boreholes (R8-CPGS01-R8-CPGS04) were put down by a combination of light cable percussion boring using a Dando 2000 rig and rotary follow-on drilling techniques with core recovery in bedrock using a truck mounted Berretta T44 rotary drilling rig.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken where appropriate and as directed within fine soils. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to bedrock after which rotary coring was employed to recover core samples of the bedrock. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals throughout the overburden using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has

been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix E.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015: Code of practice for ground investigations*.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.3 Standpipe installations

A groundwater monitoring standpipe was installed in R8-CPGS02 and R8-CPGS04.

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin (Irl)) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

4.5 Groundwater monitoring

Following completion of site works, groundwater monitoring was conducted on one round. Ground water monitoring was carried out using a water interface probe.

The monitoring records are presented in Section 6.3.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **soil chemistry:** pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix D.

5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

Test	Test carried out in accordance with
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load
	strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60
Uniaxial	ISRM Suggested Methods (1981) Suggested method for determining
compression	deformability of rock materials in uniaxial compression, Part 2
strength tests	and
	ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods
	for rock characterization, testing and monitoring, 2007

The test results are presented in Appendix D.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise Glacial Till. These deposits are underlain by limestones and shales of the Lucan Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Paved surface:** all boreholes encountered paving brick at ground level. Beneath this were both bitmac and concrete of varying thickness likely representing old road surfaces. Concrete was encountered to a maximum depth of 1.00m in R8-CPGS01 and R8-CPGS02.
- **Made Ground (sub-base):** approximately 200-300mm of aggregate fill beneath the paved surface beneath the deepest paved surface to a maximum depth of 1.20m in R8-CPGS01 and R8-CPGS02.
- **Glacial Till:** sandy gravelly clay, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth.
- **Bedrock (Limestone):** Rockhead was encountered at depths ranging from 4.50m in R8-CPGS01-R8-CPGS03 to 6.00m in R8-CPGS04.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during percussion boring and rotary drilling through soil and rock as groundwater strikes as shown in Table 1 below.

Table 1: Groundwater strikes encountered during the ground investigation

GI Ref	Water Level (mbgl)	Comments
R8-CPGS01	4.30	
R8-CPGS02	3.40	
RO-CF G302	3.60	Rose to 3.50m after 20 mins
R8-CPGS03	4.20	
R8-CPGS04	3.50	

It should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any additional groundwater strikes and the possibility of encountering groundwater at other depths during excavation works should not be ruled out.

It should also be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Subsequent groundwater monitoring of the standpipe installations recorded water levels as shown in Table 2.

Table 2: Groundwater monitoring

Date	Water level (mbgl)									
Date	R8-CPGS02	R8-CPGS04								
19/11/20	3.29	2.53								

Seasonal variation in groundwater levels should also be factored into design considerations and continued monitoring of the two installed standpipes will give an indication of the seasonal variation.

7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

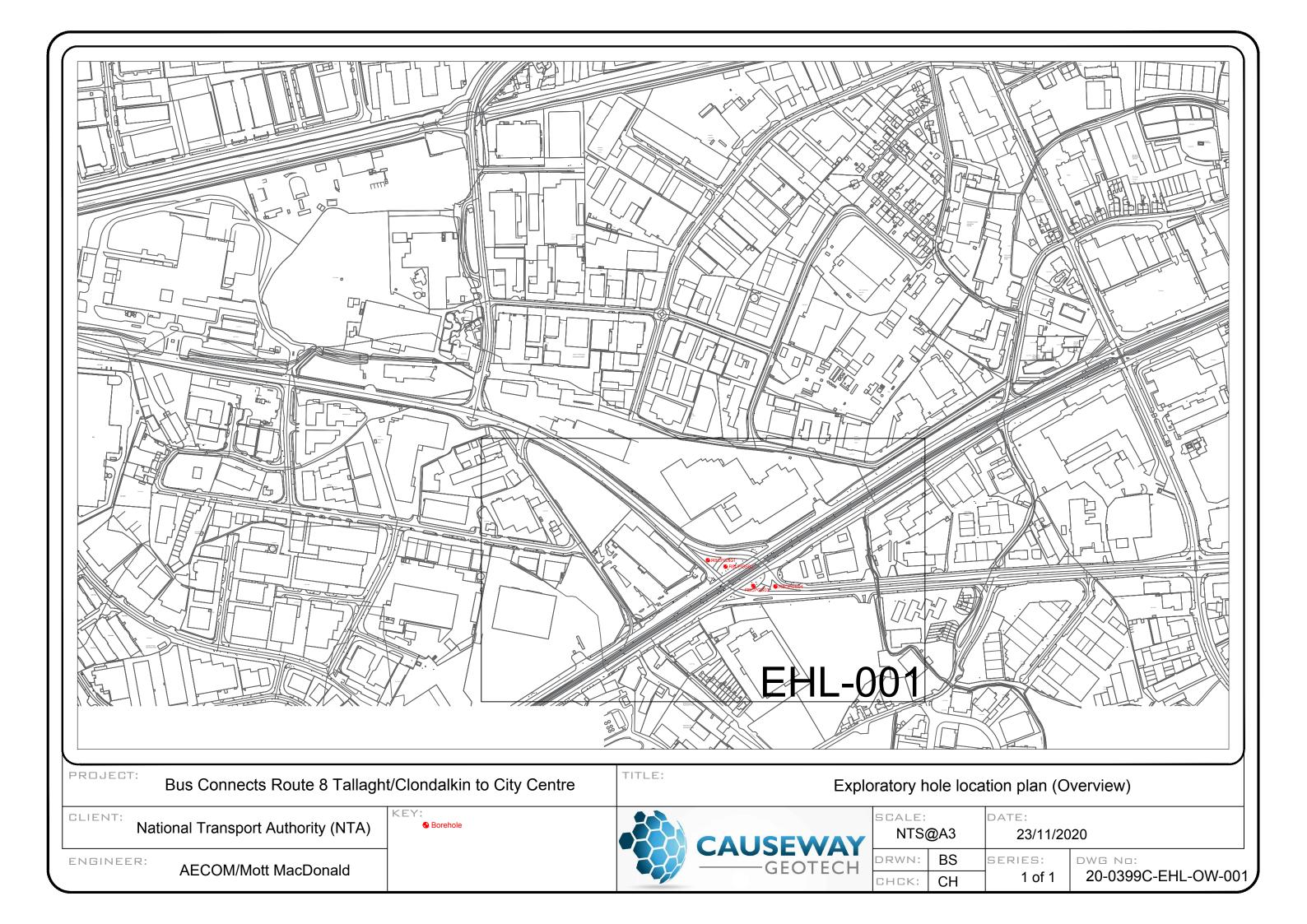
IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

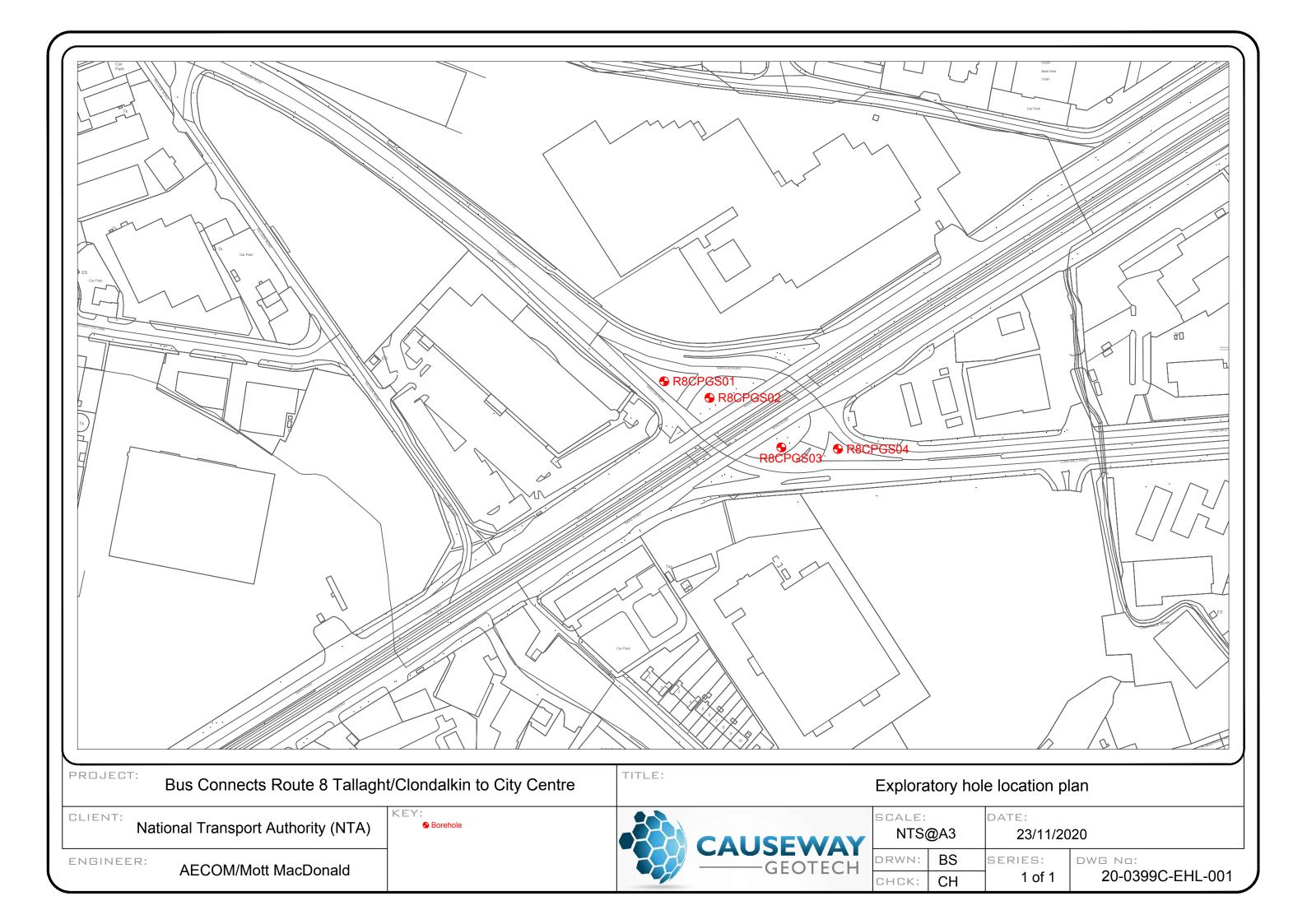
BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.


BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.


BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLAN

APPENDIX B
BOREHOLE LOGS

Method	C	Plant U	SEC	OTI	ECI	Н	Base	(m)	20-0	ct No. 399C	Client:	Rep: AECOM/	Transport A	Authority (NT	-A)		R	R8-CPGS01 Sheet 1 of 2			
Cable Percuss Rotary Drillin Rotary Corin	ng	Dando : Beretta Beretta	T44		0.0	00 00	4.0 4.5 10.0	00		0.59 E 1.04 N	Final De	•		13/10/2020		BM+GT		Scale: 1:	50		
	imple / Tests	Fie	eld Re	cords	l		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription		1	Water	Backfill			
1.20 D: 1.20	7 52 112 PT (S) 53 8 13 54 PT (S) 9 14 55 5 PT (S) 111 11 trike at 5	Water	/50 fc = 064 /12,11 = 064 100 93 100 Rose	97 73 100 SCR	67 P2 RQD	>20 8	m)	Dry	44.19 43.89 43.69 44.19 43.89 43.69		Remarks Hand dug i	MADE GROUND: PacONCRETE BITMAC MADE GROUND: Graithologies. CONCRETE MADE GROUND: Grof mixed lithologies. Very stiff black slight content. Sand is fin fine to coarse of mi lithologies. Very stiff brownish cobble content. Sand is fin fine to coarse of mi lithologies. Very stiff brownish cobble content. Sand is fin fine to coarse of mi lithologies. Very stiff brownish cobble content. Sand is fine to coarse of mi lithologies. Very stiff brownish cobble content. Sand subrounded fine to subrounded of mixed subrounded of mixed subrounded of mixed subrounded of mixed subrounded in the subrounded of mixed subrounded in the subrounded of mixed subrounded in the subrounded	rey sandy silty s. Sand is fine to the sandy slightly sandy slightly sand is fine to cocarse. Generally sandy gray slightly sand is fine to cocarse of mixed lithologies. grey slightly sand is fine to cocarse of mixed lithologies. grey sandy gray slightly sand is fine to cocarse of mixed lithologies. grey sandy gray sandy gray gray sandy gray sandy gray lithologies. grey sandy gray sand lithologies. grey sandy gray sandy gray sandy gray sandy	subangular fine o coarse. tly gravelly CLAY is ravel is subangular fine of coarse. Cobbles are subangular fine of coarse. Indy slightly gravarse. Gravel is seed lithologies. Cobbles are seed lithologies. Cobbles of coarse o	to coarse Y with low ular to sub ubrounded velly CLAY subangulai obbles are low cobble grey LIME ture spaci re surface ed (25/80/) sits and bi 90 degree l brown sta k grey LIM ghtly close ced (45/22 n clay depo	GRAVEL cobble rounded of of mixed with low r to e content. SSTONE. ng with s. (200), rown joints, aining ESTONE. or fracture (0/720), soits on dightly en			1.0 —		
					-		Barre K6L	el	Flush Polyr			on Reason at scheduled depth.			Last Up		W	\AC	- iS		

	CAUSEWAY GEOTECH Method Plant Used Top (m) Base (n)									Project Client: Client's			Authority (NT		Centre	Borehole II R8-CPGS0				
Method								Coord	linates	Final De	-		13/10/2020	Driller:	BM+GT		Sheet 2 o			
Cable Percussion Rotary Drilling Rotary Coring	Dando Beretta Beretta	a T44		4.0	00 00 50	4.0 4.5 10.	50		0.59 E 1.04 N	Elevatio			19/10/2020		CH+NP		Scale: 1			
Depth Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth	Water Depth	Level	Depth (m)	Legend		Desc	cription			/ater	Backfill			
(m) Samples 9.35 C	r Strikes	96	96	76	8	m)	elling To (38.19 38.19	(m)	Remarks	Medium strong (loc Partially weathered spacing with brown Discontinuities: 1. 0 to 15 degree be plana and slightly u fracture surfaces. 2. 35 to 40 degree jundulating, smooth fracture surfaces. 3. At 5.25m to 5.55r undulating, smooth surfaces.	cally strong) the clay deposits. edding fracturindulating, sme to interest and the control of th	inly bedded dar ced strength, slip es, medium space both with brown spaced (240/615 lay infill up to 51 o 8.85m: 75 deg	ced (45/22 n clay depo n/>3400), s mm betwe	r fracture 0/720), sits on lightly en	Water	Backfill	9.5 · · · · · · · · · · · · · · · · · · ·		
Casing Details To (m) Diam (mm	Water () From (m)		ed o (m)																	
						Barr K6L	el	Flush Polyi			on Reason at scheduled depth.			14/12/2	dated 2020	W	AC	GS		

Meth Cable Perc	nod cussion	Plant U	Jsed 2000	OT I	Top 0.0	(m)	Base	00	20-0	ect No. 0399C	Project Client: Client's	s Rep: AECOM/Mott MacDonald Sheet 1 of 2
Rotary D Rotary C		Beretta Beretta			4.	00 50	4.5 10.			30.16 E 50.28 N	Elevatio	on: 47.59 mOD End Date: 20/10/2020 Logger: CH+NP FINAL
Depth (m)	Sample / Tests	Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mOD 47.49	Depth (m)	Legend	Description Backfill MADE GROUND: Paving brick
0.50 0.50 1.00 1.00 1.20 1.20 - 1.32 2.00 2.00 2.00 - 2.28 3.00 3.00 3.00 - 3.40 4.00 4.00 - 4.08 4.50 4.70 5.45 5.55 6.00 6.00 6.80 7.10 7.50 8.10 9.00 Struck at (m) (a) 3.40 3.60	B7 D11 ES3 SPT (S) B8 ES4 U13 SPT(S) N 25mm/s 50mm/s = 0643 C ES C C C	N=50 (25 for 50mm) Hamin N=50 (14,26, Hammer SN Ublow=30 86 Strike at 3.46 Slow seepage ST SO (25 for 60 for Hammer SN Hammer SN Time (min) 20	750 fc = 064 0% 0m. e at 3	or 125 13 3.60m	85 78 61 RQD	10 5 19 >20 FI	m)	Dry	47.19 46.99 46.59 46.39 46.09 43.99 43.59 43.29 43.09 42.04		Remarks	CONCRETE BITMAC CONCRETE MADE GROUND: Grey angular fine to coarse GRAVEL of mixed (lithologies.) Wery stiff greyish black slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed lithologies. Wery stiff prown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed lithologies. Wery stiff greyish black slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed lithologies. Cobbles are subrounded of mixed lithologies. Wery stiff greyish black slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded of mixed lithologies. Wery stiff greyish black slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded of mixed lithologies. Wery stiff greyish black sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subrounded of mixed lithologies. Wery stiff greyish black sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded of mixed lithologies. Wery stiff greyish black sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subrounded of mixed lithologies. Wery stiff greyish black sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Gravel is subrounded of mixed lithologies. Late of the greyish black sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subrounded fine to coars
Casing I To (m) I 4.50	Details Diam (mm) 200	Water From (m)		ed o (m)			Barr K6L	el	Flush Poly			ion Reason d at scheduled depth. Last Updated 14/12/2020 14/12/2020

			GEC	OTI	ECI	Н			20-0	ect No. 0399C	Client:	National	Transport /	Authority (NT	Project Name: Bus Connects Route 8 Tallaght/Clondalkin to City Centre Client: National Transport Authority (NTA) Client's Rep: AECOM/Mott MacDonald							
Metho Cable Perco Rotary Dr Rotary Co	ussion illing	Plant L Dando Beretta Beretta	2000 a T44)	0. 4.	00 00 00 50	4.	00	7097	30.16 E 60.28 N	Final De			14/10/2020 20/10/2020		BM+GT		heet 2 of Scale: 1:5	50			
Depth							Casing	Water	Level	Depth		17.33 11100	Description									
(m) .35	C	/ Field Records	ICR	SCR	KQD	FI	Casing Depth (m)	Water Depth (m)	mOD	(m)	Legend	Medium strong (loc			grev LIME	STONE.	Water	Backfill				
0.00	Water	Strikes		96	1				37.59		Remarks	Partially weathered with localised brow surfaces. Discontinuities: 1. 10 to 20 degree the slightly undulating, brown staining on four 2. 60 to 85 degree in the surface of	l: slightly reduin clay deposit clay deposit clay deposit smooth with irracture surfactorints, probable oth with brown y infill up to 12 End of Bore	red strength, closs and brown stail res, closely, space patchy brown class. y widely spaced, n staining on join	ser fractui ining on fraced (20/15 ay deposits slightly un nt surfaces	re spacing acture 10/310), s and andulating s and			9.5 - 10.0 - 10.5 - 11.0 - 11.5 - 12.0 - 12.5 - 13.0 - 14.5 - 15.0 - 16.5 - 17.0 - 17.5 - 18.0 - 18.5 - 18.			
3.40 3.60	3.60	Time (min) 20 Water From (m)	Add	3.50	n) F	rom (3.70		To (01:00	Hand dug i	ispection pit excavate	ed to 1.20m.									
4.50	∠00				-	Core	Barı	rel	Flush	Туре	Terminati	on Reason			Last Up	dated						
						S	K6L				Terminated	at scheduled depth.			14/12/	2020	\mathbf{N}	AG	3			

		CAUS					L		20-0	ct No.	Project Client: Client's			Authority (N7		Centre	R	orehole B-CPGS	503
Cable Per Rotary I	rcussion	Plant U Dando Beretta	2000)	0.0 3.0	00	Base 3.0 4.5	00		dinates 76.99 E	Final De	epth: 10.00 m	Start Date:	16/10/2020	Driller:	BM+GT		heet 1 o Scale: 1:	
Rotary	_	Beretta			4.		10.		73162	27.95 N	Elevatio	47.08 mOD	End Date:	21/10/2020	Logger:	CH+NP		FINAL	
Depth (m)	Sample / Tests	Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mOD 46.98	Depth (m) - 0.10	Legend	MADE GROUND: Pa		cription			Water	Backfill	L.
0.50 0.50 1.00 1.00 1.20 - 1.65 2.00 2.00 2.00 2.00 - 2.40	B7 ES1 B8 ES2 U20 B9 D16 ES3 SPT (S)	Ublow=20 80% 0.00 Dry N=50 (2,5/50 for 245mm) Hammer SN = 0643							46.78 46.48 44.58	0.60		CONCRETE MADE GROUND: Gr mixed lithologies. S Firm brown sandy g subangular to subre Very stiff dark grey coarse. Gravel is sul	rey slightly san and is fine to o gravelly CLAY. S bunded of mix	coarse. and is fine to co ed lithologies.	parse. Grav	el is			1.5 —
3.00 3.00 3.00 3.00 3.00 - 3.06	B10 D11 ES4 SPT (S)	30mm) Hami	=50 (25 for 25mm/50 for 0.00 Dry 0mm) Hammer SN = 0643 trike at 4.20m.						44.08 42.78	3.00		Very stiff dark grey	sandy gravelly	CLAY. (Driller's	description	n)			3.0
4.55 4.70 5.05 5.30	C ES C		100	97	72				42.58	4.50		Grey LIMESTONE. D. Medium strong thic weathered: slightly with localised brow Discontinuities: 1. 0 to 15 degree be planar, and slightly 58mm between sor fracture surfaces. 2. 20 to 40 degree jundulating, smooth	ckly bedded da reduced stren in clay deposit edding fracture undulating, sn me fracture su oints, widely s	rk grey LIMESTO gth, slightly closes. es, medium spa nooth with brow rfaces and oran paced (210/123	ser fracture ced (65/22 vn clay infil ge staining 35/1370),	5/480), Il up to			4.5 —
6.00 6.00 6.30	c c		100	100	96	6				(5.15)		joint surfaces and n 3. At 5.85m to 6.00 undulating, smooth	o staining on j m and 7.95m t	oint surfaces. to 8.15m: 85 to	90 degree	joints,			6.0
7.50 7.50	С		100	100	82														7.5 — - - - 8.0 — - - - - - - - - - - - - - - - - - - -
9.00 9.05	C	r Strikes	TCR	SCR	RQD	FI	Chie	elling	g Details		Remarks								9.0 —
4.20 Casing	Casing to (n	Time (min) Water	Add		n) Fr	rom (2.50	m)	To (m) Tim			nspection pit excavat	ed to 1.20m.						
-1.50	200						Barr K6L	el	Flush Polyi			on Reason I at scheduled depth.			Last Up 14/12/	'	W	AC	iS

Method Cable Percussion	Plant U	Jsed	OTE	ECI	H (m)	Base	_	20-0	ect No. 399C	Project Client: Client's Final De	Rep: AECOM/	Transport A	Authority (NT	(A)	Centre BM+GT	R	orehole 3-CPGS heet 2 o	603
Rotary Drilling Rotary Coring	Beretta Beretta			3.0 4.		4.5 10.			76.99 E 27.95 N	Elevatio	n: 47.08 mOD	End Date:	21/10/2020	Logger:	CH+NP		FINAL	
Depth (m) Samp	es / Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription			Water	Backfill	
Wat Truck at (m) Casing to 4.20 Casing Details To (m) Diam (m) 4.50 Zoo Zoo	Water	Rose	scr e to (n			m)	elling To (Remarks Hand dug in	Medium strong thic weathered: slightly with localised brow Discontinuities: 1. 0 to 15 degree be planar, and slightly 58mm between sor fracture surfaces. 2. 20 to 40 degree jundulating, smooth joint surfaces and n 3. At 5.85m to 6.00 undulating, smooth 9.43m to 9.51m: Browns Soft becoming firm Gravel is subangula	reduced strenn clay depositive dedding fracture undulating, some fracture surplication of the control of the co	gth, slightly closes. es, medium spaces, medium spaces, medium spaces, medium spaces, medium spaced (210/123 lay infill up to 6roint surfaces. o 8.15m: 85 to 9 laying.	teed (65/22) or clay infil ge staining 5/1370), mm between 90 degree j	e spacing 5/480), I up to on en some joints, ees.			10.5 - 11
						Barr K6L	el	Flush			on Reason at scheduled depth.			14/12/2	dated 2020	W	AG	iS

Meth Cable Per	hod	Plant L	Jsed		Тор	(m)	Base	_	20-0	ect No. 0399C	Project Client: Client's	s Rep: AECOM,	Transport /	Authority (N7	ГА)	Centre BM+GT	R	oreho 8-CPC	GS04 L of 2
Rotary C	Orilling	Dando : Beretta Beretta	T44	ŀ	0.0 4.0 6.0	00	4.0 6.0 12.0	0		13.86 E 27.02 N		Elevation: 46.53 mOD End Date: 22/10/2020 Logger: CH+N				: CH+NP		Scale: FINA	
Depth (m)	Sample / Tests	Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Des	cription		ı	Water	Backfi	(II
0.50 0.50 1.00 1.00	B5 ES1 B6 ES2								46.43 46.23 45.83	0.10		MADE GROUND: Pa CONCRETE MADE GROUND: Gi lithologies. Firm brown sandy g subangular to subre	rey angular fin	and is fine to co	oarse. Grav	rel is		**	0.5
1.20 1.20 - 1.65	D12 SPT (S)	N=13 (2,2/3, 0643	3,3,4) Han	nmer :	SN =	0.00	Dry											1.5
2.00 2.00 2.00 - 2.45	B7 ES3 U13	Ublow=20 10	00%				0.00	Dry	44.53	2.00		Stiff greyish black s content. Sand is fir fine to coarse of mi lithologies.	ne to coarse. G	Gravel is subang	ular to sub	rounded			2.0 —
3.00 3.00 3.00 3.00 - 3.45	B8 D11 ES4 SPT (S)	N=20 (2,3/4,10643	5,5,6) Han	nmer :	SN =	0.00	Dry	42.93	3.60		Vorugiff growish h	o ale clighthe so	ali elielakli evo	ally CLAV	Cand in	•		3.0
4.00	B12	Strike at 3.50	θm.						42.53	4.00		Very stiff greyish blands fine to coarse. Grands mixed lithologies.							4.0
4.00 4.00 - 4.07	D13	N=50 (25 for 50mm) Hami					0.00	3.60	.2.33			Very stiff greyish bl	ack sandy grav	elly CLAY. (Drill	er's descrip	otion)			4.5
5.00 - 5.25	SPT (S)	N=50 (8,15/5 Hammer SN :			mm)		5.00	3.50	41.03	5.50		Crow LIMESTONE //	المعالم والمعالمة	ntion)					5.0 —
										6.00		Grey LIMESTONE. (Driller's descri	ption)					6.0
6.00 6.10 6.20	C C		100	70	51	4			40.53	6.00		Medium strong thin weathered: slightly with brown slightly Discontinuities: 1. 0 to 10 degree business slightly undulating,	reduced strer sandy slightly edding fractur smooth with l	igth, slightly close gravelly clay de es, closely space prown slightly sa	ser fracture posits. ed (50/170 andy slight	/470), ly gravelly			6.5 —
7.40 7.50 7.60	ES					>20				(2.25)		clay infill up to 40m staining on fracture 2. At 7.20m to 7.60 brown slightly sand joint surfaces. 6.75m to 7.20m: Firm or	surfaces. m: 85 to 90 de ly slightly grave	egree joint, undu elly clay infill up	ulating, rou to 7mm b	igh with etween			7.0 —
7.70	C		100	97	69	8			38.28	8.25		6.75m to 7.20m: Firm gre to coarse. Gravel is suba Medium strong bed LIMESTONE. Partial	coming strong	thickly bedded	dark grey				8.0 — - - - - - - 8.5 —
8.90 9.00 9.20	c c					11						localised brown cla Discontinuities: 1. 0 to 10 degree be planar and slightly	y deposits. edding fractur	es, closely space	ed (30/150	/400),			9.0
	Wate	r Strikes	TCR	SCR	RQD	FI	Chise	elling	Details	<u> </u>	Remarks							<u> </u>	
Casing I	Casing to (m Details Diam (mm	Time (min) Water	Add		n) Fr	rom (3.60	m)	To (1	m) Tim			nspection pit excavat	ed to 1.20m.						
6.00	200						Barre K6L	el	Flush Poly			ion Reason			Last Up 14/12/		W	\A(GS

Method	CAUS	Jsed		Тор	(m)	Base	_	20-0	ct No. 399C	Project Client: Client's	Rep: AECOM/N	Transport /	Authority (NT	-A)	Centre BM+GT	R	oreholo B-CPG	S04
Cable Percuss Rotary Drillii Rotary Corir	ng Beretta	T44	ļ	4.	00 00 00	4.0 6.0 12.	00		3.86 E 7.02 N	Elevatio			22/10/2020		CH+NP	:	Scale: 1	
Depth (m)	Samples / Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend	,	Desc	cription			Water	Backfill	
10.15 C 10.50 11.05 C			100		>20				(3.75)		Medium strong becc LIMESTONE. Partially localised brown clay Discontinuities: 1. 0 to 10 degree bec planar and slightly u up to 7mm between 2. At 8.30m to 8.74m 90 degree incipient j clay infill up to 8mm 3. At 9.80m to 9.90m with brown staining	y weathered: deposits. dding fractur indulating, sm a some fractur in, 9.60m to 9 joints, undula i and no stain n; 70 degree i	closer fracture s es, closely space nooth with locali re surfaces. .80m and 10.50i ting, rough with ing on joint surfa ncipient joint, u	d (30/150 ised brown to 10.85 localised aces.	/400), clay infill m: 75 to brown			9.5
12.00					3			34.53	12.00			End of Bore	hole at 12.00m					12.0
																		12.5 — 13.0 — 14.0 — 14.5 — 15.0 — 16.5 — 16
	Water Strikes g to (m) Time (min)		scr e to (r			m)	elling To (g Details m) Tim 00 (Remarks Hand dug i	nspection pit excavate	d to 1.20m.						17.0
Casing Deta To (m) Diam	wails Water (mm) From (m)		ed o (m)		Core	Barro		Flush Polyr	Туре 1		on Reason			Last Up 14/12/	dated		\AC	



APPENDIX C CORE PHOTOGRAPHS

Bus Connects Route 8 Tallaght/Clondalkin to City Centre

Report No.: 20-0399C

R8-CPGS01 Box 1 4.50-6.00m

R8-CPGS01 Box 2 6.00-7.50m

R8-CPGS01 Box 3 7.50-9.00m

R8-CPGS01 Box 4 9.00-10.00m

R8-CPGS02 Box 1 4.50-6.00m

R8-CPGS02 Box 2 6.00-7.50m

R8-CPGS02 Box 3 7.50-9.00m

R8-CPGS02 Box 4 9.00-10.00m

R8-CPGS03 Box 1 4.50-6.00m

R8-CPGS03 Box 2 6.00-7.50m

R8-CPGS03 Box 3 7.50-9.00m

R8-CPGS03 Box 4 9.00-10.00m

R8-CPGS04 Box 1 6.00-7.50m

R8-CPGS04 Box 2 7.50-9.00m

R8-CPGS04 Box 3 9.00-10.50m

R8-CPGS04 Box 4 10.50-12.00m

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 3 Balbriggan Business Park, Balbriggan Co Dublin, Ireland, K32 EH36 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

19 November 2020

Project Name:	Bus Connects Route 8 Tallaght/Clondalkin to City Centre
Project No.:	20-0399C
Client:	National Transport Authority (NTA)
Engineer:	AECOM

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: Bus Connects - Route 8 - Tallaght/Clondalkin to City Centre

Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	14
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	3
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	1
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	1
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377-7: 1990: Cl 8	1
ROCK	Point load index	ISRM Commission on Testing Methods. Suggested Method for Determining Point Load Strength 1985	20
ROCK	Uniaxial Compressive Strength (UCS)*	ISRM Suggested Methods -Rock Characterization Testing and Monitoring, Ed. E T Brown - 1981	14

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	pH Value of Soil		4
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	Sulphate Content water extract		4

Summary of Classification Test Results

Project No.

Project Name

20-0399C

Bus Connects Route 8 - Tallaght/Clondalkin to City Centre

						0						,		
Hole No.			mple		Soil Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande
	Ref	Тор	Base	Туре		Mg/m	-	%	%	%	%	%	Mg/m3	Classification
R8-CPGS01	12	1.20		D	Grey sandy silty subangular fine to coarse GRAVEL.			7.9						
R8-CPGS01	13	2.00		D	Brown sandy gravelly silty CLAY.			10.0						
R8-CPGS01	14	3.00		D	Grey sandy silty subangular fine to coarse GRAVEL.			0.8						
R8-CPGS02	10	1.20		D	Greyish brown gravelly silty fine to coarse SAND.			6.9						
R8-CPGS02	11	2.00		D	Grey sandy slightly gravelly silty CLAY.			10.0						
R8-CPGS02	13	3.00		U	Grey sandy gravelly silty CLAY.			21.0	78	39 -1pt	19	20		СІ
R8-CPGS02	12	4.00		D	Brown gravelly clayey fine to coarse SAND.			4.8						
R8-CPGS03	8	1.00		В	Grey sandy very gravelly silty CLAY.			15.0						
R8-CPGS03	20	1.20			Grey sandy slightly gravelly silty CLAY.			21.0	76	36 -1pt	19	17		CI
R8-CPGS03	16	2.00		D	Grey sandy gravelly silty CLAY.			7.7						
R8-CPGS03	11	3.00		D	Greyish brown sandy silty subangular fine to coarse GRAVEL.			1.6						
R8-CPGS04	13	2.00		U	Brown sandy slightly gravelly silty CLAY.			19.0	74	37 -1pt	19	18		СІ
														0.04D \/i 4

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 4

Key Date Printed

Density test Liquid Limit Particle density

Linear measurement unless : 4pt cone unless : sp - small pyknometer

wd - water displacement cas - Casagrande method gj - gas jar

wi - immersion in water 1pt - single point test

19/11/2020

Stephen.Watson

Approved By

Summary of Classification Test Results

Project No. Project Name

20-0399C

Bus Connects Route 8 - Tallaght/Clondalkin to City Centre

		Sar	Sample								PL	PI	Particle	
Hole No.	Ref		Base	Туре	Soil Description	bulk	dry	%	425µm	LL %	%	%	density Mg/m3	Casagrande Classification
R8-CPGS04	11	3.00		D	Grey sandy gravelly silty CLAY.	Mg/m	13	9.8	76	70	70	70	IVIG/III3	
R8-CPGS04	13	4.00		D	Grey slightly sandy slightly silty subangular fine to coarse			0.9						
					GRAVEL.									

Key Density test

Liquid Limit Particle density

gj - gas jar

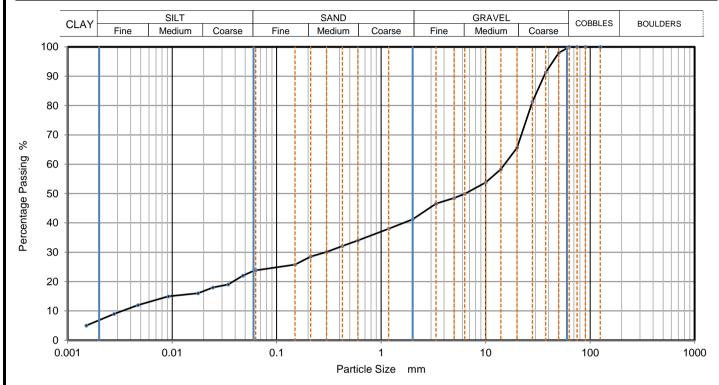
Date Printed

Approved By

Linear measurement unless:

wd - water displacement

4pt cone unless: sp - small pyknometer


cas - Casagrande method

19/11/2020

wi - immersion in water 1pt - single point test

Stephen.Watson

CAUSEWAY	DAD		Job Ref	20-0399C		
GEOTECH	PARI	TICLE SIZE DIST	IKIBUTION		Borehole/Pit No.	R8-CPGS03
Site Name	Bus Connects Route	8 - Tallaght/Clonda	lkin to City Centre		Sample No.	8
Soil Description	Grey sandy very gravell	y silty CLAY.		Depth, m	1.00	
Specimen Reference	4	Specimen Depth	1	m	Sample Type	В
Test Method	BS1377:Part 2:1990, cla	uses 9.2 and 9.5			KeyLAB ID	Caus2020103052

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06290	24
90	100	0.04744	22
75	100	0.03447	19
63	100	0.02454	18
50	98	0.01769	16
37.5	91	0.00925	15
28	81	0.00471	12
20	66	0.00278	9
14	58	0.00150	5
10	54		
6.3	50		
5	49		
3.35	47		
2	41		
1.18	38		
0.6	34	Particle density	(assumed)
0.425	32	2.65	Mg/m3
0.3	30		
0.212	29	7	
0.15	26	7	
0.063	24	7	

Dry Mass of sample, g	6123

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	58.8
Sand	17.4
Silt	16.6
Clay	7.2

Grading Analysis		
D100	mm	
D60	mm	15.2
D30	mm	0.294
D10	mm	0.00318
Uniformity Coefficient		4800
Curvature Coefficient		1.8

Remarks

Preparation and testing in accordance with BS1377-2:1990 unless noted below

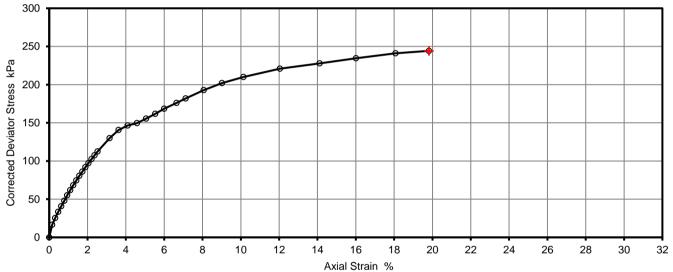
Approved

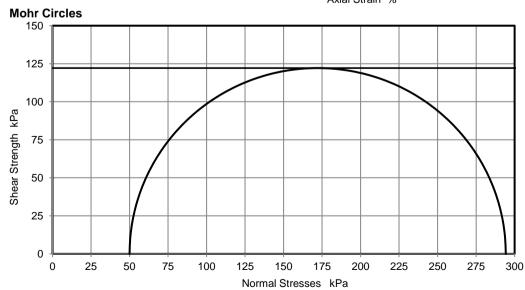
Stephen.Watson

LAB 05R Version 4

CALISEWAY	Unconsolidated Undrained Triaxial Causeway Compression Test without measurement		nt	Job Ref	20-0399C	
of pore pressure - single specimen		Borehole/Pit No.	R8-CPGS04			
Site Name	Bus Connects Route 8 - Tallaght/Clondalkin to City Centre			Sample No.	13	
Soil Description	Brown sandy slightly gravelly silty CLAY.		Depth	2.00		
Specimen Reference	6	Specimen Depth	2.05	m	Sample Type	U
Specimen Description	Stiff brown sandy slightly gravelly silty CLAY.			KeyLAB ID	Caus2020103056	
Test Method	BS1377: Part 7: 1990, clause 8, single specimen			Date of test	09/11/2020	

Test Number Length Diameter Bulk Density Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain
Deviator Stress, (σ1 - σ3)f
Undrained Shear Strength, cu
Mode of Failure

1	
209.4	mm
104.5	mm
2.39	Mg/m3
10.6	%
2.16	Mg/m3

	_
2.0	%/min
50	kPa
19.8	%
244	kPa
122	kPa ½(σ1 - σ3)f
	1

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects based on Fig 11 BS1377-7:1990

Mohr circles and their interpretation is not covered by BS1377-7. This is provided for information only.

Remarks

No failure defined. Testing terminated at 20% axial strian

Approved

Stephen.Watson

Printed

16/11/2020 14:12

LAB 15R Version 4

CA	AUSEW,			Point Load Strength Index Tests Summary of Results														
Project No.	-0399C			Proje	ct Name	Э	В	us Co	nnects	s Rout	te 8 - T	allaght	/Clonda	alkin to	City C	Centre		
Borehole	Sa	mple		Spe	cimen	0.17		Test Type see ISRM)			Dimensions			Force P	Equivalent diameter, De	Point Load Strength Index		Remarks (including
No.	Depth m	Ref.	Туре	Ref.	Depth m	Rock Type	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	kN	3 Equival	Is MPa	Is(5 0) _{MPa}	water content if measured)
R8-CPGS01	4.60		С	1	4.60	LIMESTONE	А	U	NO		101.5	57.0	55.0	21.0	84.3	3.0	3.7	
R8-CPGS01	5.00		С	2	5.00	LIMESTONE	А	U	YES		101.6	61.0	57.0	18.4	85.9	2.5	3.2	
R8-CPGS01	5.75		С	3	5.75	LIMESTONE	D	U	NO	88.9	101.8	101.8	100.0	24.3	100.9	2.4	3.3	
R8-CPGS01	5.90		С	4	5.90	LIMESTONE	D	U	YES	81.2	101.6	101.6	99.0	19.6	100.3	1.9	2.7	
R8-CPGS01	6.35		С	5	6.35	LIMESTONE	Α	U	YES		101.7	54.0	50.0	17.1	80.5	2.6	3.3	
R8-CPGS01	6.90		С	6	6.90	LIMESTONE	D	U	NO	78.3	101.4	101.4	97.0	14.9	99.2	1.5	2.1	
R8-CPGS02	4.50		С	7	4.50	LIMESTONE	D	U	NO	74.6	101.4	101.4	99.0	22.3	100.2	2.2	3.0	
R8-CPGS02	5.45		С	8	5.45	LIMESTONE	А	U	YES		101.3	59.0	56.0	17.6	85.0	2.4	3.1	
R8-CPGS02	6.00		С	9	6.00	LIMESTONE	D	U	YES	69.7	101.4	101.4	99.0	18.2	100.2	1.8	2.5	
R8-CPGS02	7.10		С	10	7.10	LIMESTONE	D	U	YES	73.9	101.5	101.5	97.0	19.8	99.2	2.0	2.7	
R8-CPGS03	4.55		С	11	4.55	LIMESTONE	D	U	YES	70.2	101.1	101.1	98.0	19.1	99.5	1.9	2.6	
R8-CPGS03	5.30		С	12	5.30	LIMESTONE	А	U	YES		101.3	48.0	44.0	18.0	75.3	3.2	3.8	
R8-CPGS03	6.30		С	13	6.30	LIMESTONE	D	U	NO	77.5	101.2	101.2	100.0	20.8	100.6	2.1	2.8	
R8-CPGS03	6.80		С	14	6.80	LIMESTONE	Α	U	YES		101.3	55.0	51.0	17.6	81.1	2.7	3.3	
R8-CPGS04	6.00		С	15	6.00	LIMESTONE	D	U	NO	72.1	101.2	101.2	100.0	21.6	100.6	2.1	2.9	
R8-CPGS04	6.10		O	16	6.10	LIMESTONE	Α	U	YES		101.3	59.0	54.0	24.5	83.5	3.5	4.4	
R8-CPGS04	7.60		С	17	7.60	LIMESTONE	D	U	NO	80.6	101.3	101.3	100.0	22.6	100.6	2.2	3.1	
R8-CPGS04	8.90		O	18	8.90	LIMESTONE	Α	U	YES		101.2	51.0	47.0	16.5	77.8	2.7	3.3	
Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random Dimensions Dps - Distance between platens (platen separation) Dps' - at failure (see ISRM note 6) Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P										Dps								
Test performed in accordance with ISRM Suggested Methods : 2007, unless noted otherwise Detailed legend for test and dimensions, based on ISRM, is shown above. Size factor, F = (De/50)0.45 for all tests. LAB 17R Version 4 Date Printed Approved By 19/11/2020 Stephen.Watson																		

Project No. Point Load S Summ Project Name															ts			
Project No.)-0399C			Proje	ect Name	Э	R	us Co	nnacte	e Pout	te 8 - T	allaght	(Clond	alkin to	City (Centre		
Borehole		ample		Spe	ecimen		Test	Type ISRM		S Koui		ensions	Cionda	Force	Equivalent diameter, S	Point Strengt		Remarks (including
No.	Depth	Ref.	Туре	Ref.	Depth	Rock Type	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	kN		Is MPa	Is(5 0) MPa	water content if measured)
R8-CPGS04	9.20		С	19	9.20	LIMESTONE	D	U	YES	mm 85.2	mm 101.4	mm 101.4	97.0	19.4	mm 99.2	2.0	2.7	
R8-CPGS04	10.15		С	20	10.15	LIMESTONE	D	U	NO	81.0	101.3	101.3	99.0	22.7	100.1	2.3	3.1	
Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random Dimensions Dps - Distance between platens (platen separation) Dps' - at failure (see ISRM note 6) Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P											_							
Test performed in accordance with ISRM Suggested Methods : 2007, unless noted otherwise Detailed legend for test and dimensions, based on ISRM, is shown above. Size factor, F = (De/50)0.45 for all tests.												U K A S TESTING 10122						

UNIAXIAL COMPRESSION TEST ON ROCK - SUMMARY OF RESULTS

Project No.

Project Name

20-0399C

Bus Connects Route 8 - Tallaght/Clondalkin to City Centre

		Sar	nple				Specime mensio		Bulk	Water	Uniaxi	ial Compre	ession ³	
Hole No.	Ref	Тор	Base	Туре	Rock Type	Dia.	Length mm	H/D	Density ² Mg/m ³	Content ¹ %	Condition	Mode of failure	UCS MPa	Remarks
R8-CPGS01		6.60		С	LIMESTONE	101.4	261.7	2.6	2.69	0.2	as received	F	99.9	
R8-CPGS01		7.50		С	LIMESTONE	101.4	251.9	2.5	2.69	0.1	as received	F	73.4	
R8-CPGS01		9.35		С	LIMESTONE	101.5	252.8	2.5	2.69	0.2	as received	F	93.6	
R8-CPGS02		5.55		С	LIMESTONE	101.4	253.7	2.5	0.27	0.1	as received	F	80.2	
R8-CPGS02		6.80		С	LIMESTONE	101.4	254.1	2.5	2.68	0.3	as received	F	88.2	
R8-CPGS02		8.10		С	LIMESTONE	101.5	252.7	2.5	2.68	0.1	as received	F	80.7	
R8-CPGS02		9.35		С	LIMESTONE	101.4	252.6	2.5	2.68	0.2	as received	F	104.0	
R8-CPGS03		5.05		С	LIMESTONE	101.5	254.1	2.5	2.69	0.2	as received	F	88.7	
R8-CPGS03		6.00		С	LIMESTONE	101.5	251.9	2.5	2.69	0.2	as received	F	92.4	
R8-CPGS03		7.50		С	LIMESTONE	101.4	253.6	2.5	2.72	0.2	as received	F	72.8	
R8-CPGS03		9.05		С	LIMESTONE	101.3	251.5	2.5	2.68	0.1	as received	F	76.7	
R8-CPGS04		6.20		С	LIMESTONE	101.4	255.6	2.5	2.68	0.2	as received	F	104.0	
R8-CPGS04		7.70		С	LIMESTONE	101.4	254.4	2.5	2.71	0.1	as received	F	99.3	
R8-CPGS04		11.05		С	LIMESTONE	101.5	251.0	2.5	2.67	0.1	as received	F	108.0	
Notes														

- 1 ISRM p87 test 1, water content at 105 \pm 3 $^{\circ}\text{C},$ specimen as tested for UCS
- 2 ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density
- $3\,$ ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials

S - Single shear AC - Axial cleavage

Mode of failure :

MS - multiple shear

Axial cleavage F - Fragmented

above notes apply unless annotated otherwise in the remarks

above notes apply unless annotated otherwise in the remarks				
Test Specification	Date Printed	Approved By	Table	
International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007	19/11/2020		sheet	1
		Stephen.Watson		1

eurofins

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Chemtest

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-30005-1

Initial Date of Issue: 10-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

Project 20-0399C Bus Connects 8

Quotation No.: Date Received: 05-Nov-2020

Order No.: Date Instructed: 05-Nov-2020

No. of Samples: 4

Turnaround (Wkdays): 5 Results Due: 11-Nov-2020

Date Approved: 10-Nov-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Results - Soil

Project: 20-0399C Bus Connects 8

Client: Causeway Geotech Ltd		Chemtest Job No.:				20-30005	20-30005	20-30005
Quotation No.:	(Chemte	st Sam	ple ID.:	1092179	1092180	1092181	1092182
Order No.:		Client Sample Ref.:				10	8	12
	Sample Location:				R8-CPGS01	R8-CPGS01	R8-CPGS03	R8-CPGS04
	Sample Type:			SOIL	SOIL	SOIL	SOIL	
	Top Depth (m):			2.00	4.00	1.00	4.00	
			Date Sa	ampled:	04-Nov-2020	04-Nov-2020	04-Nov-2020	04-Nov-2020
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	13	8.5	14	0.47
рН	U	2010		4.0	8.4	8.7	8.6	9.6
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.36	0.13	0.17	0.014

Test Methods

SOP	Title	Parameters included	Method summary					
2010	pH Value of Soils	рН	pH Meter					
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.					
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930					
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES					

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

eurofins

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-31072-1

Initial Date of Issue: 19-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

Project 20-0399C Route 8 Tallaght/

Clondalkin to City Centre

Quotation No.: Date Received: 16-Nov-2020

Order No.: Date Instructed: 16-Nov-2020

No. of Samples: 4

Turnaround (Wkdays): 5 Results Due: 20-Nov-2020

Date Approved: 19-Nov-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Results - Soil

Project: 20-0399C Route 8 Tallaght/Clondalkin to City Centre

Client: Causeway Geotech Ltd		Che	mtest Jo	ob No.:	20-31072	20-31072	20-31072	20-31072
Quotation No.:	Chemtest Sample ID.:			1097043	1097044	1097045	1097046	
		Sa	ample Lo	ocation:	R8CPGS01	R8CPGS02	R8CPGS03	R8CPGS04
	Sample Type:				SOIL	SOIL	SOIL	SOIL
	Top Depth (m):				4.50	4.70	4.70	7.40
			Date Sa	ampled:	13-Nov-2020	13-Nov-2020	13-Nov-2020	13-Nov-2020
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	0.38	0.58	1.3	5.1
рН	U	2010		4.0	8.9	9.2	8.8	8.9
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.018	0.023	0.059	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary					
2010	pH Value of Soils	рН	pH Meter					
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.					
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930					
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES					

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

LABORATORY RESTRICTION REPORT

Projec	t Referenc	;e		20-03	99C	То	Sean Ross
Proj	ect Name	Вι	ıs Conn	ects Route 8 Tallag	ht/Clondalkin to City Centre	Position	Project Manager
TR	reference			20-0399C	/ G01	From Position	Joseph Nicholl Laboratory Quality Manage
he following the	ng sample(s laboratory.	and test(s) are re		ow. Could you please complete the		
Hole Number	Number	Sample Depth (m)	Туре	Test Type	Reason for Restrict	ion	Required Action
R8 CPG S02	13	3.00	U	UU Triaxial	Unable to obtain specime - coarse gravel content t		CANCEL
R8 CPG S03	20	1.20	U	UU Triaxial	Unable to obtain specime - coarse gravel content t		CANCEL
			\square				
			H				

For electronic reporting a form of electronic signature or printed name is acceptable

Laboratory Signature Joseph Nicholl	Project Manager Signature Sean Ross
Date 13 November 2020	Date

APPENDIX E SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing Keeble House Stuart Way East Grinstead

West Sussex RH19 4QA SPT Hammer Ref: .0209

Test Date: 22/02/2020

Report Date: 03/03/2020

File Name: .0209.spt

Test Operator: NPB

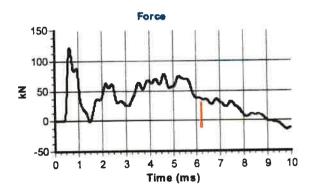
Instrumented Rod Data

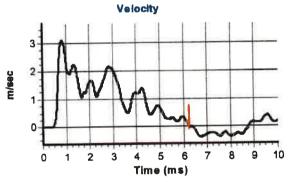
Diameter d_r (mm): 54

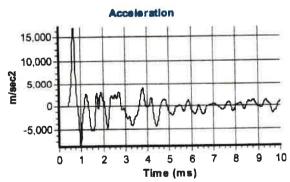
Wall Thickness t_r (mm): 6.0

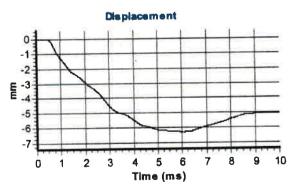
Assumed Modulus E_a (GPa): 200

Accelerometer No.1: 6458


Accelerometer No.2: 9607


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0


Comments / Location

BALLEYMONEY

Calculations

Area of Rod A (mm2): 905 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 317

Energy Ratio E_r (%):

67

Signed: Neil Burrows

Title: Field Operations Manager

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing Keeble House Stuart Way East Grinstead West Sussex

RH19 4QA

SPT Hammer Ref: .!

.0643

Test Date:

22/02/2020

Report Date:

03/03/2020

File Name:

.0643.spt

Test Operator:

NPB

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

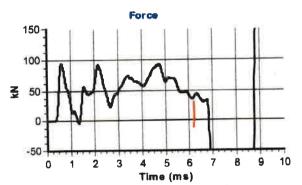
6.0

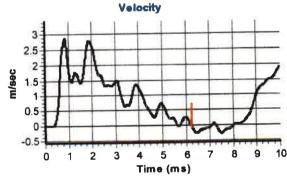
Assumed Modulus Ea (GPa): 200

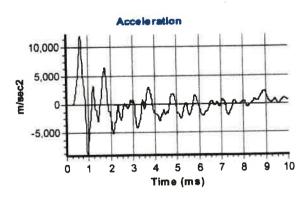
Accelerometer No.1:

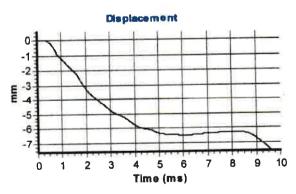
6458

Accelerometer No.2:


9607


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0


Comments / Location

BALLEYMONEY

Calculations

Area of Rod A (mm2):

905

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas} (J):

400

Energy Ratio E, (%):

85

Signed: Neil Burrows

Title:

Field Operations Manager

The recommended calibration interval is 12 months